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OPEN SOURCE PRESENTATION ATTACK

DETECTION BASELINE FOR IRIS RECOGNITION

Abstract

by

Joseph G. McGrath

This thesis proposes the first, known to us, open source presentation attack de-

tection (PAD) solution to distinguish between authentic irises (possibly wearing clear

contact lenses) and irises with textured contact lenses. This software can serve as

a baseline in various PAD evaluations, and also as an open-source platform with

an up-to-date reference method for iris PAD. The software is written in C++ and

Python and uses only open source resources, such as OpenCV. This method does not

incorporate iris image segmentation, which may be problematic for unknown fake

samples. Instead, it makes a best guess to localize the approximate position of the

iris. The PAD-related features are extracted with the Binary Statistical Image Fea-

tures (BSIF), which are classified by an ensemble of classifiers incorporating support

vector machine, random forest, and multilayer perceptron. The models attached to

the current release have been trained with the NDCLD’15 database and evaluated

on the independent datasets included in the LivDet-Iris 2017 competition. The soft-

ware implements the functionality of retraining the classifiers with any database of

authentic and attack images. The accuracy of the current version offered with this

thesis exceeds 99% when tested on subject-disjoint subsets of NDCLD’15 and oscil-

lates around 85% when tested on the LivDet-Iris 2017 benchmarks, which is on par

with the results obtained by the LivDet-Iris 2017 winner.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Biometric security systems are designed to recognize individuals on the basis of

biological characteristics – such as iris texture – that are unique to each individual.

The goal of such a system in general is to provide a recommendation for future action

based upon the identity of an individual. In the case of a friendly individual, the

system will allow the user to gain access, while in the case of a threatening individual,

the system will not allow the user to gain access and may activate a warning system.

Iris texture is a commonly used biometric for security systems. The iris has many

advantages over other biometrics; for example, it has a multi-dimensional structure

that allows for more variation between individuals than the single dimensional struc-

ture of biometrics such as fingerprints. The pattern formed in the iris depends on

the unique interplay between a multitude of features such as furrows, crypts, and

rings. Matching is performed through a test of statistical independence based on

the features present in the iris. If a set of iris features fails the test of statistical

independence, a match has been detected [7].

Current deployments of iris recognition systems include a port of entry recognition

system in the UAE and the Aadhaar biometric identification system in India. Such

systems are becoming ubiquitous as they appear in smartphones such as the Samsung

Galaxy S8 and other applications such as ATMs.
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(a) Live iris (b) Textured contact lens (c) Printout

Figure 1.1. Example iris presentations

1.2 Motivation

1.2.1 Presentation Attack Detection

A threatening user may desire to instead be recognized as a friendly or unknown

individual. This individual will undertake a presentation attack, which is to make a

presentation to the biometric system in an attempt to manipulate the system into an

incorrect decision. An imposter attack presentation is when the malicious individual

attempts to be recognized by the system as a different, friendly individual, while a

concealer attack presentation is when the individual merely desires to obscure the

useful biometric information. Presentation attack detection (PAD) is therefore a

vital component of any biometric security system because it allows the system to be

robust to malicious attacks.

In the context of iris recognition systems, PAD can involve the detection of a

multitude of presentation attack instruments (PAI) such as paper printouts, cadaver

eyes, and textured contact lenses. Example presentations to an iris system can be

found in Fig. 1.1. Iris PAD is not a solved problem: numerous examples can be

found demonstrating successful presentation attacks on commercially available sys-

tems, suggesting PAD mechanisms were either ineffective or missing in these systems.

In 2002, paper printouts of an iris were used to match with an identity registered

2



with Panasonic’s Authenticam BM-ET100 [21] and more recently paper printouts

and contact lenses were used to spoof the iris scanner on Samsung’s Galaxy S81. If

high quality iris information can be obtained from personal photographs, it could be

combined with these spoofing methods to successfully access any biometric system

where the individual is registered [22]. Without successful iris PAD, security sys-

tems that utilize the uniqueness of individual iris textures would no longer be secure;

therefore, iris PAD is critical.

In this thesis, the primary focus will be the detection of textured contact lenses

as they are one of the simplest methods for concealer attack presentation and may

be less obvious to human components in the security system; however, the software

presented in this thesis is able to train models that may be specialized to other PAI.

Textured contact lenses are manufactured with the intent to modify the appearance

of the wearer’s eye by changing the texture or color. Therefore, textured contact

lenses significantly reduce the visible live iris texture and can allow threatening users

to conceal their identities. It has been shown that textured contact lenses are able

to lower the verification rate of users to below 40% [26].

1.2.2 Open Source Baseline

One possible reason for slow progress in any field is the lack of a freely available

foundation of research to build upon. This is especially true in computer science,

as many solutions involve software components that have been implemented previ-

ously. If an open source platform is available to build upon, researchers can focus

on merely modifying the existing code base to accommodate a novel proposal rather

than creating an entirely new implementation.

An open source platform to maintain a baseline iris PAD methodology would

increase the rate of progression of iris PAD research. Such a platform would be

1https://goo.gl/zjEF3M, The Guardian, May 2017
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easy to contribute to and easy to benefit from when developing or evaluating original

solutions. The OpenCV platform2 is a great example of such an initiative in computer

vision in general. Through OpenCV, researchers are able to focus on innovative ideas

and the production of solutions with increased readability, which allows for even more

innovation [1]. The Masek implementation and more recently the OSIRIS system

have played a similar role for iris recognition. OSIRIS has served a dual purpose

within the research community, both providing an open source platform that can be

modified to improve performance and a baseline iris recognition solution that can be

used to benchmark the performance of other algorithms [17].

The success of other open source computer vision platforms has motivated the

development of this baseline, which can be accessed through its GitHub repository

at https://github.com/CVRL/OpenSourceIrisPAD. This open source platform pro-

vides the research community with a starting point for iris PAD, which is vital for

the continued security of iris texture based biometric security systems. In addition

to the software available, ready to use models that have been trained on NDCLD’153

have been provided at https://notredame.box.com/v/OpenSourceIrisPADModels.

A condensed version of this thesis has been submitted to the Biometrics: Theory, Ap-

plications and Systems (BTAS) 2019 conference4. A preprint of this submission is

available on arXiv at https://arxiv.org/abs/1809.10172.

1.3 Standardization

Various standards for iris PAD and biometrics in general have been introduced

by the International Organization for Standardization (ISO) and the International

2https://opencv.org

3https://cvrl.nd.edu/projects/data/#the-notre-dame-contact-lense-dataset-2015ndcld15

4http://ieee-biometrics.org/btas2019/
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Electrotechnical Commission (IEC). ISO/IEC 30107 provides the standard for PAD

where the attack occurs at the sensor rather than at another point in the biometric

system. The framework and vocabulary defined in the freely available ISO/IEC

30107-15, such as PAD and PAI, will be used throughout this paper.

The metrics defined in ISO/IEC 30107-3 will be used to evaluate the baseline open

source iris PAD solution. These include the attack presentation classification error

rate (APCER) and the bona fide presentation classification error rate (BPCER). The

APCER is the proportion of attack presentations incorrectly classified as bona fide

presentations while the BPCER is the proportion of bona fide presentation incorrectly

classified as attack presentations.

1.4 Related Work

Iris PAD is a dynamic research area with many different methods proposed to

date. A recent survey by Czajka and Bowyer classifies the various PAD methods

into four separate categories, based on two separate labels: a method may be static

or dynamic and also passive or active [4]. Static methods use still images while

dynamic methods use video to analyze the changing features of the iris, such as the

pupil size. A method is passive if no additional stimulation of the eye is performed

and active otherwise. Various PAI require different methods as they exploit the

biometric security system in different ways.

The method used in this paper to perform iris PAD will be static and passive

because of the focus on textured lens detection. Static-passive PAD methods typically

rely on classifiers that are trained to recognize presentation attacks on the basis of

various hand-crafted texture descriptors. One such texture descriptor is Local Binary

Pattern (LBP), which was used to achieve high accuracy recognition of textured

5https://goo.gl/JSbiqy
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contact lenses on the Notre Dame Cosmetic Contact Lens 2012 dataset [10]. However,

the performance significantly decreases when novel textured lens types are considered

in the testing set [9]. Another texture descriptor, binarized statistical image features

(BSIF), has been shown to outperform LBP in generalization tests across texture

contact lens brands [14], a result that is confirmed and extended to multiple iris

segmentation techniques and a variety of model types by Doyle et al. [8].

A more recent approach to static-passive iris PAD has been through the use of

convolutional neural networks [16]. These networks are able to automate the process

of learning image features that are relevant to iris PAD; thus, systems employing this

type of iris PAD are able to avoid the potential limitations of hand-crafted features.

Combined iris localization and PAD has been explored as well and gives state of the

art results without requiring iris segmentation [2].

For other categories of PAD – not static-passive – many different approaches exist.

If some modifications in the iris recognition equipment are possible, iris PAD methods

incorporate multi-spectral imaging solely in near-infrared band [18] or combined with

visible-light imaging [22]; 3D properties of the eye [5, 15]; or dynamic features such

as spontaneous [24] or stimulated [3] pupil oscillations, eye blinks [20], or eyeball

movements [13].

In the context of the existing tools for and efforts toward faster development of

iris PAD methodologies, it is worth mentioning numerous benchmark databases, such

as Clarkson, Warsaw, Notre Dame, and WVU/IIITD-Delhi developed for LivDet-Iris

competitions [27–29] (paper printouts and textured contact lenses); NDCCL 2012 [10],

NDCLD 2013, [9] and NDCLD 2015 [8] (clear and textured contact lenses); ATVS-FIr

[11] (paper printouts); Pupil-Dynamics [3] (pupil size in time with and without visible-

light stimuli); Post-Mortem-Iris [23] (images of irises acquired up to one month after

death); CASIA-Iris-Syn [25] (synthetically generated iris images); or data acquired by

a LightField sensor GUC-LF-VIAr-DB [19].
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The LivDet-Iris competitions6 are an important effort towards independent eval-

uation of iris PAD algorithms. Editions were organized in 2013 [27], 2015 [29], and

2017 [28] and brought together researchers from around the world, who submitted

their iris PAD algorithms for evaluation. In the most recent edition, LivDet-Iris

2017 [28], the winning algorithm was unable to recognize between 11% and 38% of

the attack images in the open-set regime, where some (or all) properties of the test-

ing samples are unknown during training. Thus, despite the multitude of solutions

proposed so far, there is still a significant amount of progress to be made in iris PAD.

6http://livdet.org
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CHAPTER 2

BASELINE METHOD FOR TEXTURED CONTACT LENS DETECTION

The implemented solution follows the methodology proposed by Doyle and Bowyer

[8] and the feature extraction is based on Binary Statistical Image Features (BSIF)

proposed by Kannala and Rahtu [12]. This method was chosen to serve as a baseline

for open source iris PAD because it is one of the more recent and effective methods.

2.1 BSIF Image Features

In this method, the calculated “BSIF code” is based on filtering the image with

n filters of size s × s and then binarizing the filtering results with a threshold at

zero. Hence, for each pixel n binary responses are given, which are in the next step

translated into a n-bit grayscale value. Fig. 2.1 presents BSIF codes for example iris

images (with and without textured contact lenses) for two example scales (s = 7 and

s = 17) and n = 8.

The histograms resulting from gray-scale BSIF codes are later normalized to a

z-score and used as texture descriptors with the number of histogram bins equal to

2n. In addition to the original ISO-compliant iris image resolution of 640×480, BSIF

codes for an image down-sampled to 320× 240 were extracted. This allowed for the

exploration of more scales in feature extraction as this effectively doubles the filter

scale.

The Best Guess segmentation technique explored by Doyle and Bowyer has been

implemented as standard in the baseline method. For Best Guess segmentation, a

region of interest is selected that corresponds to the average iris center point and

8



(a) Live iris (b) 7× 7 code of (a) (c) Histogram of (b) (d) 17× 17 code of (a) (e) Histogram of (d)

(f) Textured contact (g) 7× 7 code of (f) (h) Histogram of (g) (i) 17× 17 code of (f) (j) Histogram of (i)

Figure 2.1. 8-bit BSIF codes and the resulting histograms calculated at two
example scales for an authentic iris image and an iris image with textured

contact lens.

radius from the training set. For the ISO-compliant iris images in NDCLD’15, this

corresponds to a center location of (320, 250) with a radius of 125 pixels.
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Figure 2.2: A schematic view of the proposed open-source iris PAD solution.
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Figure 2.3. Example filters with n = 8 and s = 11.

2.1.1 Default BSIF

In the original BSIF paper by Kannala and Rahtu, n ∈ {5, 6, 7, 8, 9, 10, 11, 12}

and s ∈ {3, 5, 7, 9, 11, 13, 15, 17}; thus, there are 60 combinations of n and s (4

combinations, namely n ∈ {9, 10, 11, 12} for s = 3, were not available). When the

images are down-sampled to 320× 240, the number of combinations can be doubled

to 120 through the effective addition of s ∈ {6, 10, 14, 18, 22, 26, 30, 34}. The filters,

for each considered combination of n and s, were trained on patches extracted from

natural images in a way to maximize the statistical independence of filter responses.

An example of the filters used for n = 8 and s = 11 can be seen in Fig. 2.3.

To extend the original methodology, in which only n = 8 filters were used, the

method has been implemented here for all n as proposed in the original BSIF paper.

The method is equivalent for n 6= 8, the only difference being the length of each BSIF

code. This addition allows for more options when searching for the optimal ensemble

of classifiers.
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2.1.2 Domain Specific BSIF

An additional extension of the method proposed is the inclusion of domain-specific

BSIF filters, which have been shown to out-perform the default, natural image BSIF

filters [6]. The filters used were trained on gaze-based regions of interest from iris

images in such a way as to maximize statistical independence, just as was done in

default BSIF. For the domain-specific filters, n ∈ {5, 6, 7, 8, 9, 10, 11, 12} and s ∈

{5, 7, 9, 11, 13, 15, 17, 19, 21, 27, 33, 39}, giving 96 possible combinations of n and s.

With down-sampling, the number of combinations can be doubled to 192.

2.2 Models

Three different model types were included in the baseline method to provide a wide

range of possibilities, especially when combined with the large number of possible

BSIF feature sets. The models chosen for inclusion in the method are support vector

machine (SVM), random forest, and multilayer perceptron. A separate set of models

can be trained for each feature set, giving 360 models total for standard BSIF and

576 models total for domain specific BSIF.

The classifiers will vary in strength on the validation set and therefore a subset

of the larger set of models is selected for use on the testing set. To select this subset,

the models are ranked by their individual performance on the validation set. These

models are then added one by one to an ensemble of classifiers to use in majority

voting. The number of models that produces the maximum performance on the

validation set is taken as the optimal number of models. The selected ensemble

can then be used for majority voting on other datasets or directly for iris PAD in

biometric security systems.
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CHAPTER 3

SOFTWARE ARCHITECTURE

The TCL Detection solution proposed in this paper supports textured contact

lens (TCL) detection and includes three main modes of operation: feature extraction,

model training, and model testing.

3.1 Tools Used

3.1.1 Languages

The TCL Detection solution includes versions written in C++ and Python. C++

was chosen initially due to performance considerations: while security is the main

goal of an iris recognition system, the system should also be reasonably fast. An-

other consideration when C++ was chosen was compatibility with OSIRIS for the

incorporation of automated iris segmentation in the future.

TCL Detection was also implemented in Python to support ease of understand-

ing. The baseline will be able to foster further research in iris PAD without requiring

users to allocate large amounts of time to understanding the implementation.

Both versions have been included to ensure that there is an open source baseline

that can be compared to modern commercial systems where performance is important

while also providing an easy to use system for researchers to build upon.

3.1.2 Libraries

OpenCV version 3.4.1 was used for its image handling and implementation of

machine learning models and training functions. This library was chosen because it

12



is well established in the field of computer vision and is considered the state of the

art in open source computer vision implementations.

HDF5 version 1.10.4 was also used to store extracted features in the HDF5 file

format, which was chosen due to its speed and precision.

3.1.3 Compilation

TCL Detection was tested on MacOS High Sierra 10.13.6 using g++ 4.2.1 in

addition to Xcode 10.1 and on Windows 7 64 bit using Microsoft Visual Studio

2015. A makefile is provided to assist with the compilation of the C++ version.

This makefile uses the helper tool pkg-config to ensure that the OpenCV library is

correctly included.

3.2 Functionality

TCL Detection was designed to provide a baseline open source implementation

for iris PAD. As such, it can extract BSIF features, train various models, and test

these models.

Feature extraction will work with filters of any scale and with any number of bits.

The implementation has been tested with all filters contained in standard BSIF as

well as domain specific filters created for iris recognition. Additionally, the filter sizes

can be effectively doubled by down-sampling the images prior to filtering. The results

of filtering each image are summarized in a histogram, which is output to a file for

future use.

The training portion of the program is capable of training three different types

of machine learning models – support vector machine (SVM), random forest, and

multilayer perceptron. Hyperparameter optimization is performed for each model

and specific results will be discussed in chapter 4. After training, the models are

saved as xml files.
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Testing consists of two different modes: single model and majority voting. In the

single model mode, the performance of each model on the testing set is determined

separately. If majority voting is enabled, an ensemble of models will be used to vote

on the classification of each image. In the case of a tie, a random assignment will be

made.

3.3 Class Structure

The overall structure of both versions (C++ and Python) of TCL Detection is

based on the structure of OSIRIS version 4.1 in that a manager class is used to control

all information flow within the application.

The operation of the program is controlled by changing settings in an external

configuration file. One of the primary responsibilities of the TCLManager class is load-

ing the configuration for the current iteration of the program using the loadConfig()

function. This function loads the operation commands as well as other various pa-

rameters such as the directories, images, and models to use. The TCLManager class

also contains a function showConfig() to display the current selections to the user.

The run() function can then be called to start the main program tasks. The manager

achieves this by creating instances of the other classes necessary to the operation of

the program.

The featureExtractor class (filter module in Python) handles the extrac-

tion of BSIF features for a given list of image files. The extract() method of the

featureExtractor and filter module can be used to extract and save BSIF fea-

tures for a specific scale s and number of bits n. This method creates an instance

of the BSIF filter that is then used to filter a regular or down-sampled version of

each image, depending on the input scale. The featureExtractor class and filter

module also serve as the interface with the required HDF5 functions: they create a

new file for each combination of s, n and place the feature sets within the file, indexed
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by the name of the image they represent.

The BSIFFilter class contains the methods for loading the hard-coded BSIF

filters and for generating a histogram for an image using the method described in

chapter 2. In the Python implementation, the C++ version of the BSIFFilter class

is used with Python bindings to load the required filters. The generateHistogram()

method assigns a bit to each filter used, giving an n-bit integer for each pixel corre-

sponding to the response of the filters. A histogram is then taken across the entire

image and returned to the extract method, which saves the histogram as the feature

set for that image, bit size, and filter scale.

The remainder of the operation modes are handled by the manager class, which

instantiates the required OpenCV objects to train models and test images. If model

training is enabled, the manager will call a method, loadFeatures, to load the

features for the images specified in the training list. The training features and clas-

sifications are then loaded into an instance of the TrainData class from OpenCV

for C++ or a NumPy array for Python. A new model of the type specified in the

configuration file is then initialized and trained; currently, the supported model types

are SVM, random forest, and multilayer perceptron. Training is achieved through

the trainAuto function in OpenCV for SVM and through custom training functions

designed to replicate the function of trainAuto for random forest and multilayer per-

ceptron. These training functions choose the optimal parameters using k-fold cross

validation with ten folds. Each model that is trained is then output as an xml file.

If model testing is enabled, the manager will load the required models from their

xml files. If majority voting is disabled, the manager will individually load each model

and the testing features corresponding to the BSIF scale and bit size the model was

trained on. These features will then be input to the predict function for the model

from OpenCV and the predictions will be returned. The predictions will be tested

against the classifications provided with the test set and the CCR, APCER, and
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BPCER will be output for each model individually.

If majority voting is enabled, the predictions for each model are determined and

temporarily stored. For each image, the number of models voting for each classifica-

tion is determined and the overall decision is made with a simple majority vote. In

the case of a tie, a random decision is made. The ensemble accuracy on the training

set is then determined through comparison with the classifications provided with the

test set.
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featureExtractor

- bitsize : int
- segmentation type : string
- output location : string
- image location : string
- filenames : vector<string>

+ extract(filtersize : int, directory : string)
- filter(filtersize : int)

BSIFFilter

- size : int
- bits : int
- filter : double*
+ filtername : string

+ loadFilter(filtersize : int, bits : int)
+ generateHistogram(image : Mat) :
vector<int>

TCLManager

- extractFeatures : bool
- trainModel : bool
- testModel : bool
- majorityVoting : bool
- segmentationType : string
- modelTypes : vector<string>
- scales : vector<int>
- bits : vector<int>
- trainingSet : vector<string>
- testingSet : vector<string>

+ loadConfig(filename : string)
+ showConfig()
+ run()
- trainAuto(trainData, model)

�create�

�create�

Figure 3.1. TCL Detection C++ implementation class diagram
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CHAPTER 4

RESULTS

4.1 Datasets

The datasets used for training, validation, and testing throughout the develop-

ment of this method were taken from LiveDet-Iris 2017 [28]. Datasets in LiveDet-Iris

2017 are split into training and testing subsets. Additonally, the testing subset is

further split into known and unknown subsets, indicating whether the presentation

attack instruments used in the testing set were also present in the training set.

The dataset used for training the images was the Notre Dame Contact Lens

Detection 2015 (NDCLD’15) dataset [8]. A portion (4800 images) of this dataset is

included in LiveDet-Iris 2017, but to maintain consistency with the method proposed

by Doyle and Bowyer, 7300 images from this dataset were used. Images were acquired

with two different sensors – the IrisAccess LG4000 and IrisGuard AD100 – that are

equally represented in the dataset. Each image has an ISO-compliant resolution of

640× 480. The dataset includes images with no contact lenses, clear contact lenses,

and textured contact lenses from five different brands: J&J, Ciba, Cooper, UCL, and

ClearLab. The presence of clear contact lenses is a key difference from the LiveDet-

Iris 2017 version of the dataset, in which only images without lenses or with textured

lenses are included. The focus of this paper will be on differentiating between the

clear/no lens case and the textured lens case.

In order to ensure that the iris PAD baseline was not limited in its ability to

achieve a reasonable accuracy on other datasets, two additional datasets used in
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TABLE 4.1

DATASET COMPOSITION

Dataset Live Images Textured Images Lens Brands

NDCLD’15 4800 2500 5

Clarkson 2469 1122 15

IIITD 2250 1000 –

the LivDet-Iris 2017 competition, Clarkson and IIITD, were used for the validation

and testing of models trained on NDCLD’15. The Clarkson dataset was collected

using the LG IrisAccess EOU2200 and consists of live iris images, textured contact

lens images, and printouts of iris images. Given that the focus of this paper is the

detection of textured contact lenses, the printout images were not used. The training

set, used in this paper, consisted of 2469 live images and 1122 textured lens images

with fifteen different contact lens types. The IIITD dataset is the training portion of

the combined IIITD-WVU dataset from LiveDet. It consists of 2250 real and 1000

textured contact lens images from the IIITD Contact Lens Iris database.

4.2 Hyperparameter Optimization

Hyperparameter optimization was performed using the trainAuto() function in

OpenCV for the SVM models and a separate but similar implementation of an auto-

matic training function for the multilayer perceptron and random forest models. The

difference between optimized models and default models in accuracy on the train-

ing set can be seen in Fig. 4.1. The trainAuto() function in OpenCV uses k-fold

cross-validation with 10 folds to select the hyperparameters for the SVM. These pa-

rameters include γ and c, which control the RBF shape and the penalty for outliers,
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Figure 4.1. Performance on the training set when the default training
function or automatic training function was used

respectively.

For the multilayer perceptron and random forest models, there was no automatic

hyperparameter selection function implemented in OpenCV. Therefore, the function

used to train the SVM was replicated within the TCLManager class. The function

takes the training samples and randomly shuffles them prior to dividing them into

ten different sets. Cross-validation is then used to select the best set of parameters

for each model. For the multilayer perceptron, the only parameter that is adjusted is

the size of the hidden layer. The size of the hidden layer was expressed as a function

of the number of training samples, n, such that the size of the hidden layer was n×m,

where m = {1, 2, 4, 8}. For the random forest models, the depth of the tree and the

minimum number of samples required to split a leaf node were adjusted. Six different

values were tested for the depth d of the tree, d = {1, 5, 10, 15, 20, 15}. The minimum

sample count was expressed as a percentage of the number of training samples, n,

such that the minimum sample count was p% of n, where p = {1, 1.5, 2, 2.5}.
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4.3 Base Case

Following Doyle et al., a base case was tested with SVM models trained on BSIF

with n = 8 and all available scales, giving 16 total models. SVM was selected as it

was the highest performing model in the original paper. These models were trained

on an 80:20 split of the NDCLD’15 dataset – 5840 images in the training set and 1460

images in the validation set. The models were ranked by their performance on the

validation set and then added one at a time to an ensemble, as can be seen in Fig.

4.2. The highest validation performance was achieved with a 10 model ensemble,

which gave a CCR of 99.86%.

Figure 4.2: Building a classification ensemble on Notre Dame dataset.

This ensemble, trained on the NDCLD’15 dataset, was then tested in a cross-

dataset scenario to assess how the proposed benchmark generalizes to unknown data.
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The Clarkson and IIITD training partitions from the LivDet-Iris 2017 benchmark

were used for that purpose. To estimate the variance of the test results, ten testing

iterations were performed, with each iteration consisting of a randomly selected set

of images that was half the size of the overall test set. As can be seen in Fig. 4.3,

the ensemble trained on the NDCLD’15 dataset does not produce results that are

on par with the LiveDet-Iris 2017 winner, which suggests that the generalization

capabilities of a solution achieving an excellent CCR = 99.8% in the same-dataset

scenario is limited. Therefore, additional BSIF filters and additional classifiers were

considered in the extended case to improve the poor cross-dataset performance of the

base case.

Figure 4.3. Box plots presenting the correct classification rates seen when
validation is performed on one dataset (ND) and testing on others. Bold

bars denote median values, height of each boxes equals to an inter-quartile
range (IQR) spanning from the first (Q1) to the third (Q3) quartile, and

the whiskers span from Q1-1.5*IQR to Q3+1.5*IQR.
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Figure 4.4. Multilayer perceptron structure

4.4 Extended Case

4.4.1 Model Training

The NDCLD15 database was used to train an ensemble consisting of SVM, mul-

tilayer perceptron, and random forest models. The SVMs used C-Support Vector

Classification with the radial basis function (RBF) as the kernel. The multilayer per-

ceptron models consisted of an input layer with the number of neurons corresponding

to the number of input features, a single hidden layer with the number of neurons

equal to an integer multiple of the input layer, and an output layer consisting of two

neurons, as shown in Fig. 4.4. The hyperparameter optimization performed for each

model type – SVM, multilayer perceptron, and random forest – is described in 4.2.

Further descriptions of each model type can be found in Appendix A.
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A final ensemble of models, made available with this paper, was trained on the

entire NDCLD’15 dataset. BSIF includes eight standard kernel scales and eight ker-

nel depths. For s = 3, only the first four depth options are available, giving a total

of 60 different scale and depth combinations. When combined with down-sampling,

this gives 120 different feature sets for each image. For each combination of s ∈

{3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 22, 26, 30, 34} and n ∈ {5, 6, 7, 8, 9, 10, 11, 12}, three

models (SVM, RF, and MLP) were trained on features extracted from the NDCLD’15

dataset, giving 360 total models available in the ensemble.

4.4.2 Validation Procedure

To select the strongest models, either the Clarkson or IIITD dataset was used as

the validation set. The other dataset was excluded from the validation procedure to

be used as the testing set. Each model was tested on the validation set and then

ranked by the correct classification rate measured on the validation set. The models

were then added one by one from strongest to weakest to a majority voting test on

the validation set to determine the optimal number of models to use in the ensemble.

For example, if a peak was found when using the top eight models for majority

voting on the validation set, these top eight models were selected to test for ensemble

performance on the testing set. This procedure ensures that the other dataset will be

unknown to the algorithm and the results will be a true indicator of cross-dataset

performance.

The results from validation on Clarkson and IIITD can be seen in Fig. 4.5 where

both the individual model performance and ensemble performance are shown. For

Clarkson, the highest performance (determined by the correct classification rate)

comes when seven models are used in majority voting, giving a CCR of 87.11%. For

IIITD, the highest performance comes when eight models are used in majority voting,

giving a CCR of 85.88%. The individual performance of each of the selected models,
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(a) Building a classification ensemble on Clarkson dataset.

(b) Building a classification ensemble on IIITD dataset.

Figure 4.5. Validation results for default BSIF
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TABLE 4.2

MODELS SELECTED FROM VALIDATION ON

CLARKSON

Model CCR APCER BPCER

SVM, s = 22, n = 12 83.21 33.96 8.99

SVM, s = 15, n = 12 82.68 22.99 14.74

SVM, s = 11, n = 12 82.15 17.91 17.82

SVM, s = 17, n = 12 81.15 16.76 19.81

SVM, s = 17, n = 10 81.01 21.30 17.94

SVM, s = 5, n = 9 80.87 28.16 15.03

SVM, s = 7, n = 12 79.78 18.18 21.14

including their APCER and BPCER, can be viewed in tables 4.2 and 4.3.

4.4.3 Cross-Dataset Testing

After the ensemble of models was selected on the validation set, it was used to

classify the other dataset, which served as the testing set. To estimate the variance

of the testing results, ten testing iterations were performed, with each iteration con-

sisting of a randomly selected set of images that was half the size of the overall test

set. The results of this test can be seen in Fig. 4.6. The 7 models selected using

Clarkson as the validation set were able to achieve a median correct classification

rate of 84.45% on IIITD and the 8 models selected using IIITD were able to achieve

a median correct classification rate of 84.11% on Clarkson.

These results are close to the performance achieved by the LivDet-Iris 2017 winner

(90% on Clarkson dataset and 83% on IIITD dataset). Such comparison should be
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TABLE 4.3

MODELS SELECTED FROM VALIDATION ON IIITD

Model CCR APCER BPCER

SVM, s = 13, n = 11 84.58 37.00 5.82

SVM, s = 5, n = 9 83.48 50.40 1.47

SVM, s = 13, n = 12 83.29 40.10 6.31

MLP, s = 5, n = 9 83.14 44.90 1.42

MLP, s = 5, n = 11 82.89 44.40 1.69

SVM, s = 15, n = 12 82.83 50.00 2.58

MLP, s = 5, n = 8 82.77 45.00 2.44

SVM, s = 9, n = 12 82.65 39.90 7.33

done with care, as the LivDet-Iris 2017 paper reports combined results of textured

contact lens and printouts detection. However, if iris printouts are – on average –

easier to detect than textured contact lenses, as suggested by the LivDet-Iris 2017

results, the obtained accuracy for this open source benchmark compares favorably to

the LivDet winner. These results show that a larger ensemble can be more robust to

cross-dataset tests.

4.4.4 Domain Specific BSIF

The extended case procedure was repeated for domain specific BSIF, which has

been shown to out-perform default BSIF for iris recognition [6]. The domain specific

BSIF filters were trained from iris recognition image patches and included twelve ker-

nel sizes and eight different kernel depths, giving a total of 192 feature sets per image,

including down-sampling. As described in 4.4.1, three models (SVM, RF, and MLP)
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Figure 4.6. Box plots presenting the correct classification rates seen when
validation is performed on one dataset and testing on the other. Bold bars
denote median values, height of each boxes equals to an inter-quartile range

(IQR) spanning from the first (Q1) to the third (Q3) quartile, and the
whiskers span from Q1-1.5*IQR to Q3+1.5*IQR.

were trained on features extracted from the NDCLD’15 dataset for each combination

of s ∈ {5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 26, 27, 30, 33, 34, 38, 39, 42, 54, 66, 78}

and n ∈ {5, 6, 7, 8, 9, 10, 11, 12}, giving 576 total models available in the ensemble.

As in 4.4.2, either the Clarkson or IIITD dataset was used as the validation set to

select the strongest models from the ensemble. The other dataset was excluded from

this procedure and later used as the testing set. The results of validation on Clarkson

and IIITD for the domain-specific models can be seen in Fig. 4.7. For Clarkson, the

highest performance comes when twelve models are used in majority voting, giving

a CCR of 84.15%. For IIITD, the highest performance comes when three models are

used in majority voting, giving a CCR of 83.29%. The individual performance of

each of the selected models, including their APCER and BPCER, can be viewed in

tables 4.4 and 4.5.

These selected ensembles were used to classify the other dataset, as done in 4.4.3

for default BSIF. To estimate the variance of the testing results, ten testing iterations

were performed as before, with each iteration consisting of a randomly selected set

28



TABLE 4.4

MODELS SELECTED FROM VALIDATION ON

CLARKSON WITH DOMAIN-SPECIFIC BSIF

Model CCR APCER BPCER

SVM, s = 9, n = 11 79.89 49.55 6.72

SVM, s = 11, n = 8 79.25 31.28 15.96

SVM, s = 18, n = 11 78.95 40.73 12.11

SVM, s = 7, n = 11 78.67 38.41 13.57

SVM, s = 5, n = 9 78.17 31.10 17.62

SVM, s = 11, n = 11 77.97 65.78 2.15

SVM, s = 14, n = 8 77.92 43.49 12.35

SVM, s = 11, n = 12 77.86 61.14 4.41

SVM, s = 9, n = 12 77.53 26.20 20.78

SVM, s = 14, n = 12 77.44 39.39 14.90

SVM, s = 9, n = 9 77.00 48.57 11.38

MLP, s = 5, n = 8 76.97 19.96 24.42

of images that was half the size of the overall test set. The results of this test can

be seen in Fig. 4.8. The 12 models selected using Clarkson were able to achieve a

median correct classification rate of 79.07% on IIITD and the 3 models selected using

IIITD were able to achieve a median correct classification rate of 76.80% on Clarkson.

Therefore, domain-specific BSIF did not improve the results for this cross-dataset

case. Domain-specific BSIF was trained for iris recognition, so it is possible that this

is why the improvements seen in [6] were not seen in the PAD case.

29



(a) Building a classification ensemble on Clarkson dataset.

(b) Building a classification ensemble on IIITD dataset.

Figure 4.7. Validation results for domain-specific BSIF
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TABLE 4.5

MODELS SELECTED FROM VALIDATION ON IIITD

WITH DOMAIN-SPECIFIC BSIF

Model CCR APCER BPCER

SVM, s = 5, n = 11 81.75 56.40 1.29

SVM, s = 5, n = 12 81.14 49.90 5.07

MLP, s = 5, n = 9 80.34 54.40 4.22

Figure 4.8. Box plots presenting the correct classification rates seen when
validation is performed on one dataset and testing on the other. Bold bars
denote median values, height of each boxes equals to an inter-quartile range

(IQR) spanning from the first (Q1) to the third (Q3) quartile, and the
whiskers span from Q1-1.5*IQR to Q3+1.5*IQR.
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CHAPTER 5

DEMONSTRATION

A demonstration was prepared to showcase the capabilities of the baseline iris

PAD solution when combined with a low cost USB imaging device. The program used

for the demonstration uses the functions implemented for the open source baseline

and shows the ease with which one may extend and adapt the baseline for different

purposes.

5.1 Camera and SDK

The camera selected for the demonstration was the IriShieldTM-USB 2120U1 due

to its portability and relatively low cost. Images are taken in near infrared (NIR) and

comply with ISO 19794-6 as they are 640× 480 8-bit grayscale images. Illumination

is provided by a NIR LED at the top of the device.

With the camera, Iritech, Inc. provides the IDDK 2000 API written in C++.

This API provides the functions required to configure and control all functionalities

of the device, such as the initialization of the camera and the control of the capturing

process. The API stores images in an unsigned char array format, so the only

change required to enable compatibility with the iris PAD baseline was to convert

this format into the Mat format of OpenCV.

1https://www.iritech.com/products/hardware/irishield-series
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5.2 Capabilities

The demonstration is able to acquire and classify an iris image. To acquire an

image, the IDDK 2000 API is used. The acquisition procedure is able to recognize

when there is an iris (or printout) in front of the camera. Once an iris is recognized,

the camera will take a sequence of images, with the best one selected for further use.

This image is shown on screen to indicate what will be used for classification.

An ensemble of models is then used to classify the image as a real iris or a spoof.

Two different ensembles are used for the demonstration: for printouts, an ensemble

was selected on the Warsaw dataset and for textured contact lenses, an ensemble was

selected on the Clarkson dataset. After classification, the image is modified with text

showing the result of the majority voting as well as the votes for each class. This

image is displayed to the user to indicate the overall result of the test.

5.3 Model Selection

The model selection for the textured contact lens version of the demonstration

was done on the Clarkson dataset. Results for this can be seen in 4.5.

To select models for use in the printout version of the demonstration, the valida-

tion procedure described in Chapter 4 was performed on the Warsaw dataset, which

was included in LiveDet-Iris 2017 and consists of images of live irises in addition to

images of printouts. For validation, only the training portion of the set is used, which

consists of 1844 images of irises and 2669 images of printouts, all acquired using the

IrisGuard AD100. The results of validation on Warsaw can be seen in Fig. 5.2: a

performance of 95.76% was achieved with an ensemble of three models.

As can be seen in table 5.1, the models that perform well on printouts tend to

have smaller BSIF scales, s, than models that performed well on textured lenses

(seen in tables 4.2 and 4.3). This is possibly due to the high frequency content of a
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(a) Live iris initial capture (b) Live iris result

(c) Printout initial capture (d) Printout result

Figure 5.1. Demonstration operation with a live iris and a printout
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printout, which would be better identified by a smaller filter scale. The difference in

the best performing models across different PAI is confirmed by testing the models

selected on Warsaw on the other two validation sets. As can be seen in Fig. 5.3

, the cross-PAI performance is far below that of the same-PAI performance seen in

Chapter 4; therefore, two versions of the demonstration were prepared.

Figure 5.2: Building a classification ensemble on Warsaw dataset.

5.4 Demonstration Conclusions

The simple demonstration shown here illustrates the benefits of having an open

source baseline for iris PAD: it can be quickly incorporated into different systems and

easily modified to accomodate other PAI (printouts in this case).

35



TABLE 5.1

MODELS SELECTED FROM VALIDATION ON

WARSAW

Model CCR APCER BPCER

RF, s = 7, n = 7 94.35 7.38 3.15

RF, s = 7, n = 6 93.18 9.18 3.42

SVM, s = 3, n = 8 92.95 5.25 9.65

Figure 5.3. Box plots presenting the correct classification rates seen when
validation is performed on printouts (Warsaw) and testing on textured
contact lenses (Clarkson and IIITD). Bold bars denote median values,

height of each boxes equals to an inter-quartile range (IQR) spanning from
the first (Q1) to the third (Q3) quartile, and the whiskers span from

Q1-1.5*IQR to Q3+1.5*IQR.
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CHAPTER 6

CONCLUSIONS

6.1 Open Source Baseline

This thesis offers the first, known to us, open-source software solution for iris

presentation attack detection. It is based on a recent and effective methodology

of using Binary Statistical Image Features and an ensemble of classifiers to detect

textured contact lenses.

This software allows for retraining the ensemble with other datasets, defining

which classifiers form the ensemble, and calculating BSIF-based features that can be

used to test other classifiers worth adding to the ensemble. The long-term goal of this

effort is to build an open-source baseline methodology for iris PAD, for instance for

the next editions of the LivDet-Iris competitions, starting from a recent and effective

algorithm of textured contact lens detection.

6.2 Novel Dataset Performance

A trained ensemble of classifiers, added to this initial version, achieves a correct

classification rate of 84% on challenging cross-dataset tests, in a close-set scenario and

with only best guess iris segmentation required. This result is similar to the cross-

dataset classification accuracy achieved by the most recent LivDet-Iris competition

winner, which makes this implementation a useful benchmark for iris PAD.
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APPENDIX A

MODEL DESCRIPTIONS

Here the models chosen for the baseline are described in more detail.

A.1 Support Vector Machine

A support vector machine (SVM) is a binary classifier formed by a separating

hyperplane1.

f(x) = β0 + βTx (A.1)

This hyperplane will be optimal for SVM, meaning that the margin between the

separator and any examples is at a maximum. The optimal hyperplane is typically

represented such that f(x) gives 1 for all support vectors.

|β0 + βTx| = 1 (A.2)

The support vectors are the training examples that are closest to the hyperplane.

If the training data is not linearly separable, it can be transformed using a kernel.

In this paper, the radial basis function is used as the kernel.

K(xi, xj) = e−γ‖xi−xj‖
2

(A.3)

The kernel places the data in a new space where it may be linearly separable. For

example, a linear discriminator can serve as a circular discriminator if the transfor-

1https://docs.opencv.org/3.4/d1/d73/tutorial_introduction_to_svm.html
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mation x21 + x22 is used. One important feature of kernel transformations for SVM is

the kernel trick. Training a SVM involves taking the inner product between pairs of

data in the feature space. This inner product can be computationally cheaper to com-

pute than the computation of the individual kernel transformations; thus, the feature

space is only implicitly present because the kernel trick allows for faster computation

without explicit calculation of the transformation.

A.2 Random Forest

The random forest classifier is built from many different decision trees2. A decision

tree performs a series of tests on an input sample to reach an output classification.

Each node within the tree – a decision node – looks at a portion m of the M input

variables associated with the sample. The best split on these m variables, i.e. the

test that best separates the different classes, is used to split the node. The tree is

grown until no more separations can be made.

To create the decision trees for a random forest, a training set is created for

each tree through sampling with replacement (bootstrapping). For each training set,

a third of the samples are excluded and kept as out-of-bag (oob) data, which can

then be used to provide an estimation of the error as the forest is trained. After

all trees have been constructed, the forest can be used to classify new inputs. The

classification given to an input is the classification that receives the most votes when

classified by each tree individually.

2https://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm
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A.3 Multilayer Perceptron

A multilayer perceptron is a type of feed-forward artificial neural network that

has a number of hidden layers in addition to the input and output layers3. The

neurons in a multilayer perceptron are interconnected, with each having inputs from

the previous layer and outputs to the next layer. Each neuron takes a weighted sum

of the inputs from the previous layer and transforms it using an activation function.

The activation function for the hidden layer neurons in this paper was a symmetrical

sigmoid function,

f(x) = β ∗ 1− e−αx

1 + eαx
(A.4)

with α and β set to one.

To train a neural network, backpropagation – in which the gradient of the error is

calculated with respect to the weights in the network – is used. The general gradient

descent approach can then be taken to update the weights in the network. Many

different approaches to the structure of a neural network exist, but generally the input

layer consists of the same number of neurons as features. A multilayer perceptron

does not output a binary classification; instead, two output neurons must be used

with one representing the positive class and the other representing the negative class.

3https://docs.opencv.org/2.4/modules/ml/doc/neural_networks.html
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